Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.01.21265384

ABSTRACT

Introduction: Tools to detect SARS-Coronavirus-2 variants of concern and track the ongoing evolution of the virus are necessary to support ongoing public health efforts and the design and evaluation of novel COVID-19 therapeutics and vaccines. Although next-generation sequencing (NGS) has been adopted as the gold standard method for discriminating SARS-CoV-2 lineages, alternative methods may be required when processing samples with low viral loads or low RNA quality. Methods: An allele-specific probe polymerase chain reaction (ASP-PCR) targeting lineage-specific single nucleotide polymorphisms (SNPs) was developed and used to screen 1,082 samples from two clinical trials in the United Kingdom and Brazil. Probit regression models were developed to compare ASP-PCR performance against 1,771 NGS results for the same cohorts. Results: Individual SNPs were shown to readily identify specific variants of concern. ASP-PCR was shown to discriminate SARS-CoV-2 lineages with a higher likelihood than NGS over a wide range of viral loads. Comparative advantage for ASP-PCR over NGS was most pronounced in samples with Ct values between 26-30 and in samples that showed evidence of degradation. Results for samples screened by ASP-PCR and NGS showed 99% concordant results. Discussion: ASP-PCR is well-suited to augment but not replace NGS. The method can differentiate SARS-COV-2 lineages with high accuracy and would be best deployed to screen samples with lower viral loads or that may suffer from degradation. Future work should investigate further destabilization from primer:target base mismatch through altered oligonucleotide chemistry or chemical additives.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.26.21265497

ABSTRACT

In March 2020, the Rare and Imported Pathogens Laboratory at Public Health England, Porton Down, was tasked by the Department of Health and Social Care with setting up a national surveillance laboratory facility to study SARS-CoV-2 antibody responses and population-level sero-surveillance in response to the growing SARS-CoV-2 outbreak. In the following 12 months, the laboratory tested more than 160,000 samples, facilitating a wide range of research and informing PHE, DHSC and UK government policy. Here we describe the implementation and use of the Euroimmun anti-SARS-CoV-2 IgG assay and provide an extended evaluation of its performance. We present a markedly improved sensitivity of 91.39% ([≥]14 days 92.74%, [≥]21 days 93.59%) compared to our small-scale early study, and a specificity of 98.56%. In addition, we detail extended characteristics of the Euroimmun assay: intra- and inter-assay precision, correlation to neutralisation and assay linearity.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.24.21251989

ABSTRACT

Background. Treatment of COVID-19 patients with convalescent plasma containing neutralising antibody to SARS-CoV-2 is under investigation as a means of reducing viral loads, ameliorating disease outcomes, and reducing mortality. However, its efficacy might be reduced in those infected with the emerging B.1.1.7 SARS-CoV-2 variant. Here, we report the diverse virological characteristics of UK patients enrolled in the Immunoglobulin Domain of the REMAP-CAP randomised controlled trial. Methods. SARS-CoV-2 viral RNA was detected and quantified by real-time PCR in nasopharyngeal swabs obtained from study subjects within 48 hours of admission to intensive care unit. Antibody status was determined by spike-protein ELISA. B.1.1.7 strain was differentiated from other SARS-CoV-2 strains by two novel typing methods detecting the B.1.1.7-associated D1118H mutation with allele-specific probes and by restriction site polymorphism (SfcI). Findings. Of 1260 subjects, 90% were PCR-positive with viral loads in nasopharyngeal swabs ranging from 72 international units [IUs]/ml to 1.7x10^11 IU/ml. Median viral loads were 45-fold higher in those who were seronegative for IgG antibodies (n=314; 28%) compared to seropositives (n=804; 72%), reflecting in part the latter group's possible later disease stage on enrolment. Frequencies of B.1.1.7 infection increased from early November (<1%) to December 2020 (>60%). Anti-SARS-CoV-2 seronegative individuals infected with wild-type SARS-CoV-2 had significantly higher viral loads than seropositives (medians of 1.2x10^6 and 3.4 x10^4 IU/ml respectively; p=2x10^-9). However, viral load distributions were elevated in both seropositive and seronegative subjects infected with B.1.1.7 (13.4x10^6 and 7.6x10^6 IU/ml; p=0.18). Interpretation. High viral loads in seropositive B.1.1.7-infected subjects are consistent with increased replication capacity and/or less effective clearance by innate or adaptive immune response of B.1.1.7 strain than wild-type. As viral genotype was associated with diverse virological and immunological phenotypes, metrics of viral load, antibody status and infecting strain should be used to define subgroups for analysis of treatment efficacy.


Subject(s)
COVID-19
4.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-79022.v1

ABSTRACT

The response to the coronavirus disease 2019 (COVID-19) pandemic has been hampered by lack of an effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral therapy. Here we report the successful use of remdesivir in a patient with COVID-19 and the prototypic genetic antibody deficiency X-linked agammaglobulinaemia (XLA). Despite evidence of complement activation and a robust T cell response, the patient developed persistent SARS-CoV-2 pneumonitis, without progressing to multi-organ involvement. His unusual clinical course identifies a key role for SARS-CoV-2 antibodies in both viral clearance and progression to severe disease. In the absence of these confounders, we took an experimental medicine approach to examine the in vivoutility of remdesivir. Over two independent courses of treatment, we observed a dramatic, temporally correlated clinical and virological response, leading to clinical resolution and viral clearance, with no evidence of acquired drug resistance. We therefore provide unambiguous evidence for the antiviral efficacy of remdesivir in vivo, and its potential benefit in selected patients.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Genetic Diseases, X-Linked
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.21.20105486

ABSTRACT

Background: Laboratory diagnosis of SARS-CoV-2 infection (the cause of COVID-19) uses PCR to detect viral RNA (vRNA) in respiratory samples. SARS-CoV-2 RNA has also been detected in other sample types, but there is limited understanding of the clinical or laboratory significance of its detection in blood. Methods: We undertook a systematic literature review to assimilate the evidence for the frequency of vRNA in blood, and to identify associated clinical characteristics. We performed RT-PCR in serum samples from a UK clinical cohort of acute and convalescent COVID-19 cases (n=212), together with convalescent plasma samples collected by NHS Blood and Transplant (NHSBT) (n=111 additional samples). To determine whether PCR-positive blood samples could pose an infection risk, we attempted virus isolation from a subset of RNA-positive samples. Results: We identified 28 relevant studies, reporting SARS-CoV-2 RNA in 0-76% of blood samples; pooled estimate 10% (95%CI 5-18%). Among serum samples from our clinical cohort, 27/212 (12.7%) had SARS-CoV-2 RNA detected by RT-PCR. RNA detection occurred in samples up to day 20 post symptom onset, and was associated with more severe disease (multivariable odds ratio 7.5). Across all samples collected [≥]28 days post symptom onset, 0/143 (0%, 95%CI 0.0-2.5%) had vRNA detected. Among our PCR-positive samples, cycle threshold (ct) values were high (range 33.5-44.8), suggesting low vRNA copy numbers. PCR-positive sera inoculated into cell culture did not produce any cytopathic effect or yield an increase in detectable SARS-CoV-2 RNA. Conclusions: vRNA was detectable at low viral loads in a minority of serum samples collected in acute infection, but was not associated with infectious SARS-CoV-2 (within the limitations of the assays used). This work helps to inform biosafety precautions for handling blood products from patients with current or previous COVID-19.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Acute Disease
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.20.20091694

ABSTRACT

Introduction. The lack of approved specific therapeutic agents to treat COVID-19 associated with SARS coronavirus 2 (SARS-CoV-2) infection has led to the rapid implementation and/or randomised controlled trials of convalescent plasma therapy (CPT) in many countries including the UK. Effective CPT is likely to require high titres of neutralising antibody levels in convalescent donations. Understanding the relationship between functional neutralising antibodies and antibody levels to specific SARS-CoV-2 proteins in scalable assays will be crucial for the success of large-scale collection and use of convalescent plasma. We assessed whether neutralising antibody titres correlated with reactivity in a range of ELISA assays targeting the spike (S) protein, the main target for human immune response. Methods. Blood samples were collected from 52 individuals with a previous laboratory confirmed SARS-CoV-2 infection at least 28 days after symptom resolution. These were assayed for SARS-CoV-2 neutralising antibodies by microneutralisation and pseudotype assays, and for antibodies by four different ELISAs. ROC analysis was used to further identify sensitivity and specificity of selected assays to identify samples containing high neutralising antibody levels suitable for clinical use of convalescent plasma. Results. All samples contained SARS-CoV-2 antibodies, whereas neutralising antibody titres of greater than 1:20 were detected in 43 samples (83% of those tested) and >1:100 in 22 samples (42%). The best correlations were observed with EUROimmun IgG ELISA S/CO reactivity (Spearman Rho correlation co-efficient 0.88; p<0.001). Based on ROC analysis, EUROimmun would detect 60% of samples with titres of >1:100 with 100% specificity using a reactivity index of 9.1 (13/22). Discussion. Robust associations between virus neutralising antibody titres and reactivity in several ELISA-based antibody tests demonstrate their possible utility for scaled-up production of convalescent plasma containing potentially therapeutic levels of anti-SARS-CoV-2 neutralising antibodies.


Subject(s)
COVID-19 , Coronavirus Infections
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.13.20060467

ABSTRACT

BackgroundThe progression and geographical distribution of SARS coronavirus 2 (SARS-CoV-2) infection in the UK and elsewhere is unknown because typically only symptomatic individuals are diagnosed. We performed a serological study of blood donors in Scotland between the 17th of March and the 18th of May to detect neutralising antibodies to SARS-CoV-2 as a marker of past infection and epidemic progression. AimTo determine if sera from blood bank donors can be used to track the emergence and progression of the SARS-CoV-2 epidemic. MethodsA pseudotyped SARS-CoV-2 virus microneutralisation assay was used to detect neutralising antibodies to SARS-CoV-2. The study group comprised samples from 3,500 blood donors collected in Scotland between the 17th of March and 19th of May, 2020. Controls were collected from 100 donors in Scotland during 2019. ResultsAll samples collected on the 17th March, 2020 (n=500) were negative in the pseudotyped SARS-CoV-2 virus microneutralisation assay. Neutralising antibodies were detected in 6/500 donors from the 23th-26th of March. The number of samples containing neutralising antibodies did not significantly rise after the 5th-6th April until the end of the study on the 18th of May. We find that infections are concentrated in certain postcodes indicating that outbreaks of infection are extremely localised. In contrast, other areas remain comparatively untouched by the epidemic. ConclusionThese data indicate that sero-surveys of blood banks can serve as a useful tool for tracking the emergence and progression of an epidemic like the current SARS-CoV-2 outbreak.

SELECTION OF CITATIONS
SEARCH DETAIL